DRnet: Dynamic Retraining for Malicious Traffic Small-Sample Incremental Learning

Author:

Wang Ruonan1,Fei Jinlong1,Zhang Rongkai1,Guo Maohua1ORCID,Qi Zan1,Li Xue1

Affiliation:

1. State Key Laboratory of Mathematical Engineering and Advanced Computing, PLA Strategic Support Force Information Engineering University, Zhengzhou 450001, China

Abstract

Deep learning has achieved good classification results in the field of traffic classification in recent years due to its good feature representation ability. However, the existing traffic classification technology cannot meet the requirements for the incremental learning of tasks in online scenarios. In addition, due to the high concealment and fast update speed of malicious traffic, the number of labeled samples that can be captured is scarce, and small samples cannot drive neural network training, resulting in poor performance of the classification model. Therefore, this paper proposes an incremental learning method for small-sample malicious traffic classification. The method uses the pruning strategy to find the redundant network structure and dynamically allocates redundant neurons for training based on the proposed measurement method according to the difficulty of the new class. This enables the network to perform incremental learning without excessively consuming storage and computing resources, and reasonable allocation improves the classification accuracy of new classes. At the same time, through the knowledge transfer method, the model can reduce the catastrophic forgetting of the old class, relieve the pressure of training large parameters with small-sample data, and improve the model classification performance. Experiments involving multiple datasets and settings show that our method is superior to the established baseline in terms of classification accuracy, consuming 50% less memory.

Funder

National Key Research and Development Project of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3