Ensemble Prediction Model for Dust Collection Efficiency of Wet Electrostatic Precipitator

Author:

Choi Sugi1ORCID,Kim Sunghwan2ORCID,Jung Haiyoung1

Affiliation:

1. Department of Fire and Disaster Prevention, Semyung University, 65 Semyung-ro, Jecheon-si 27136, Republic of Korea

2. Department of Electrical Engineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea

Abstract

WESPs (Wet Electrostatic precipitators) are mainly installed in industries and factories where PM (particulate matter) is primarily generated. Such a wet type WESPs exhibits very excellent performance by showing a PM collection efficiency of 97 to 99%, but the PM collection efficiency may decrease rapidly due to a situation in which the dust collector and the discharge electrode is corroded by water. Thus, developing technology to predict efficient PM collection in the design and operation of WESPs is critical. Previous studies have mainly developed machine learning-based models to predict atmospheric PM concentrations using data measured by meteorological agencies. However, the analysis of models for predicting the dust collection efficiency of WESPs installed in factories and industrial facilities is insufficient. In this study, a WESPs was installed, and PM collection experiments were conducted. Nonlinear data such as operating conditions and PM measurements were collected, and ensemble PM collection efficiency prediction models were developed. According to the research results, the random forest model yielded excellent performance, with the best results achieved when the target was PM 7: R2, MAE, and MSE scores of 0.956, 0.747, and 1.748, respectively.

Funder

Semyung University Research

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3