Melody Extraction and Encoding Method for Generating Healthcare Music Automatically

Author:

Li Shuyu,Jang Sejun,Sung YunsickORCID

Abstract

The strong relationship between music and health has helped prove that soft and peaceful classical music can significantly reduce people’s stress; however, it is difficult to identify and collect examples of such music to build a library. Therefore, a system is required that can automatically generate similar classical music selections from a small amount of input music. Melody is the main element that reflects the rhythms and emotions of musical works; therefore, most automatic music generation research is based on melody. Given that melody varies frequently within musical bars, the latter are used as the basic units of composition. As such, there is a requirement for melody extraction techniques and bar-based encoding methods for automatic generation of bar-based music using melodies. This paper proposes a method that handles melody track extraction and bar encoding. First, the melody track is extracted using a pitch-based term frequency–inverse document frequency (TFIDF) algorithm and a feature-based filter. Subsequently, four specific features of the notes within a bar are encoded into a fixed-size matrix during bar encoding. We conduct experiments to determine the accuracy of track extraction based on verification data obtained with the TFIDF algorithm and the filter; an accuracy of 94.7% was calculated based on whether the extracted track was a melody track. The estimated value demonstrates that the proposed method can accurately extract melody tracks. This paper discusses methods for automatically extracting melody tracks from MIDI files and encoding based on bars. The possibility of generating music through deep learning neural networks is facilitated by the methods we examine within this work. To help the neural networks generate higher quality music, which is good for human health, the data preprocessing methods contained herein should be improved in future works.

Funder

Dongguk University

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3