High Accuracy Power Quality Evaluation under a Colored Noisy Condition by Filter Bank ESPRIT

Author:

Santos Elaine,Khosravy MahdiORCID,Lima Marcelo A. A.ORCID,Cerqueira Augusto S.,Duque Carlos A.,Yona Atsushi

Abstract

Due to the highly increasing integration of renewable energy sources with the power grid and their fluctuations, besides the recent growth of new power electronics equipment, the noise in power systems has become colored. The colored noise affects the methodologies for power quality parameters’ estimation, such as harmonic and interharmonic components. Estimation of signal parameters via rotational invariance techniques (ESPRIT) as a parametric technique with high resolution has proven its efficiency in the estimation of power signal components’ frequencies, amplitudes, and phases for quality analysis, under the assumption of white Gaussian noise. Since ESPRIT suffers from high computational effort, filter bank ESPRIT (FB-ESPRIT) was suggested for mitigation of the complexity. This manuscript suggests FB-ESPRIT as well for accurate and robust estimation of power signal components’ parameters in the presence of the colored noise. Even though the parametric techniques depend on the Gaussianity of contaminating noise to perform properly, FB-ESPRIT performs well in colored noise. The FB-ESPRIT superiority compared with the conventional ESPRIT and MUSIC techniques was demonstrated through many simulations runs on synthetic power signals with multiple harmonics, interharmonics, and subharmonic components in the presence of noises of different colors and different SNR levels. FB-ESPRIT had a significant efficiency superiority in power quality analysis with a wide gap distance from the other estimators, especially under the high level of colored noise.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3