An FPGA-Based 16-Bit Continuous-Time 1-1 MASH ΔΣ TDC Employing Multirating Technique

Author:

Mouri Zadeh Khaki Ahmad,Farshidi Ebrahim,Hamid MD Ali Sawal,Othman Masuri

Abstract

An all-digital voltage-controlled oscillator (VCO)-based second-order multi-stage noise-shaping (MASH) ΔΣ time-to-digital converter (TDC) is presented in this paper. The prototype of the proposed TDC was implemented on an Altera Stratix IV FPGA board. In order to improve the performance over conventional TDCs, a multirating technique is employed in this work in which higher sampling rate is used for higher stages. Experimental results show that the multirating technique had a significant influence on improving signal-to-noise ratio (SNR), from 43.09 dB without multirating to 61.02 dB with multirating technique (a gain of 17.93 dB) by quadrupling the sampling rate of the second stage. As the proposed design works in the time-domain and does not consist of any loop and calibration block, no time-to-voltage conversion is needed which results in low complexity and power consumption. A built-in oscillator and phase-locked loops (PLLs) of the FPGA board are utilized to generate sampling clocks at different frequencies. Therefore, no external clock needs to be applied to the proposed TDC. Two cases with different sampling rates were examined by the proposed design to demonstrate the capability of the technique. It can be implied that, by employing multirating technique and increasing sampling frequency, higher SNR can be achieved.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3