An Approach to Hyperparameter Optimization for the Objective Function in Machine Learning

Author:

Kim Yonghoon,Chung and Mokdong

Abstract

In machine learning, performance is of great value. However, each learning process requires much time and effort in setting each parameter. The critical problem in machine learning is determining the hyperparameters, such as the learning rate, mini-batch size, and regularization coefficient. In particular, we focus on the learning rate, which is directly related to learning efficiency and performance. Bayesian optimization using a Gaussian Process is common for this purpose. In this paper, based on Bayesian optimization, we attempt to optimize the hyperparameters automatically by utilizing a Gamma distribution, instead of a Gaussian distribution, to improve the training performance of predicting image discrimination. As a result, our proposed method proves to be more reasonable and efficient in the estimation of learning rate when training the data, and can be useful in machine learning.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference25 articles.

1. Automated feature learning for nonlinear process monitoring – An approach using stacked denoising autoencoder and k-nearest neighbor rule

2. Neural architecture search with reinforcement learning;Zoph;arXiv,2016

3. Random search for hyper-parameter optimization;Bergstra;J. Mach. Learn. Res.,2012

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3