Hybrid Graph Neural Network-Based Aspect-Level Sentiment Classification

Author:

Zhao Hongyan1,Cui Cheng1,Wu Changxing2

Affiliation:

1. College of Engineering, Yang-En University, Quanzhou 362014, China

2. School of Information and Software Engineering, East China Jiaotong University, Nanchang 330013, China

Abstract

Aspect-level sentiment classification has received more and more attention from both academia and industry due to its ability to provide more fine-grained sentiment information. Recent studies have demonstrated that models incorporating dependency syntax information can more effectively capture the aspect-specific context, leading to improved performance. However, existing studies have two shortcomings: (1) they only utilize dependency relations between words, neglecting the types of these dependencies, and (2) they often predict the sentiment polarity of each aspect independently, disregarding the sentiment relationships between multiple aspects in a sentence. To address the above issues, we propose an aspect-level sentiment classification model based on a hybrid graph neural network. The core of our model involves constructing several hybrid graph neural network layers, designed to transfer information among words, between words and aspects, and among aspects. In the process of information transmission, our model takes into account not only dependency relations and their types between words but also sentiment relationships between aspects. Our experimental results based on three commonly used datasets demonstrate that the proposed model achieves a performance that is comparable to or better than recent benchmark methods.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jiangxi Province

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3