UISGPT: Automated Mobile UI Design Smell Detection with Large Language Models

Author:

Yang Bo1ORCID,Li Shanping1

Affiliation:

1. College of Computer Science and Technology, Zhejiang University, Hangzhou 310012, China

Abstract

Manual inspection and remediation of guideline violations (UI design smells) is a knowledge-intensive, time-consuming, and context-related task that requires a high level of expertise. This paper proposes UISGPT, a novel end-to-end approach for automatically detecting user interface (UI) design smells and explaining each violation of specific design guidelines in natural language. To avoid hallucinations in large language models (LLMs) and achieve interpretable results, UISGPT uses few-shot learning and least-to-most prompting strategies to formalize design guidelines. To prevent the model from exceeding the input window size and for the enhancement of the logic in responses, UISGPT divides design smell detection into the following three subtasks: design guideline formalization, UI component information extraction, and guideline validation. The experimental results show that UISGPT performs effectively in automatically detecting design violations (F1 score of 0.729). In comparison to the latest LLM methods, the design smell reports generated by UISGPT have higher contextual consistency and user ratings.

Publisher

MDPI AG

Reference74 articles.

1. Wireframe-based UI design search through image autoencoder;Chen;ACM Trans. Softw. Eng. Methodol.,2020

2. Nielsen, J. (2024, July 21). 10 Usability Heuristics for User Interface Design. Available online: https://www.nngroup.com/articles/ten-usability-heuristics/.

3. Galitz, W.O. (2007). The Essential Guide to User Interface Design: An Introduction to GUI Design Principles and Techniques, Wiley. [3rd ed.].

4. Yang, B., Xing, Z., Xia, X., Chen, C., Ye, D., and Li, S. (2021, January 22–30). Don’t do that! Hunting down visual design smells in complex UIs against design guidelines. Proceedings of the 2021 IEEE/ACM 43rd International Conference on Software Engineering (ICSE), Madrid, Spain.

5. Mobile-UI-Repair: A deep learning based UI smell detection technique for mobile user interface;Ali;PeerJ Comput. Sci.,2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3