Fast and Accurate Detection of Dim and Small Targets for Smart Micro-Light Sight

Author:

Wei Jia1ORCID,Che Kai1ORCID,Gong Jiayuan2ORCID,Zhou Yun1,Lv Jian1,Que Longcheng1,Liu Hu3,Len Yuanbin4

Affiliation:

1. College of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China

2. Institute of Automotive Engineers, Hubei University of Automotive Technology No. 167, Shiyan 442000, China

3. Xi’an Institute of Applied Optics, Xi’an 710065, China

4. Chengdu Dingyi Information Technology Co., Chengdu 611731, China

Abstract

To deal with low recognition accuracy and large time-consumption for dim, small targets in a smart micro-light sight, we propose a lightweight model DS_YOLO (dim and small target detection). We introduce the adaptive channel convolution module (ACConv) to reduce computational redundancy while maximizing the utilization of channel features. To address the misalignment problem in multi-task learning, we also design a lightweight dynamic task alignment detection head (LTD_Head), which utilizes GroupNorm to improve the performance of detection head localization and classification, and shares convolutions to make the model lightweight. Additionally, to improve the network’s capacity to detect small-scale targets while maintaining its generalization to multi-scale target detection, we extract high-resolution feature map information to establish a new detection head. Ultimately, the incorporation of the attention pyramid pooling layer (SPPFLska) enhances the model’s regression accuracy. We conduct an evaluation of the proposed algorithm DS_YOLO on four distinct datasets: CityPersons, WiderPerson, DOTA, and TinyPerson, achieving a 66.6% mAP on the CityPersons dataset, a 4.3% improvement over the original model. Meanwhile, our model reduces the parameter count by 33.3% compared to the baseline model.

Funder

Natural Science Foundation of Hubei Province of China

Key Project of Science and Technology Research Plan of Hubei Provincial Department of Education

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3