Reinforcement Learning-Based Energy-Saving Path Planning for UAVs in Turbulent Wind

Author:

Chen Shaonan1,Mo Yuhong1,Wu Xiaorui1,Xiao Jing1,Liu Quan1ORCID

Affiliation:

1. Electric Power Science Research Institute of Guangxi Power Grid Co., Ltd., Nanning 530023, China

Abstract

The unmanned aerial vehicle (UAV) is prevalent in power inspection. However, due to a limited battery life, turbulent wind, and its motion, it brings some challenges. To address these problems, a reinforcement learning-based energy-saving path-planning algorithm (ESPP-RL) in a turbulent wind environment is proposed. The algorithm dynamically adjusts flight strategies for UAVs based on reinforcement learning to find the most energy-saving flight paths. Thus, the UAV can navigate and overcome real-world constraints in order to save energy. Firstly, an observation processing module is designed to combine battery energy consumption prediction with multi-target path planning. Then, the multi-target path-planning problem is decomposed into iterative, dynamically optimized single-target subproblems, which aim to derive the optimal discrete path solution for energy consumption prediction. Additionally, an adaptive path-planning reward function based on reinforcement learning is designed. Finally, a simulation scenario for a quadcopter UAV is set up in a 3-D turbulent wind environment. Several simulations show that the proposed algorithm can effectively resist the disturbance of turbulent wind and improve convergence.

Funder

Key Technology Project of China Southern Power Grid Company Limited, specifically under the grant titled

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3