A Bibliometric Review of Intrusion Detection Research in IoT: Evolution, Collaboration, and Emerging Trends

Author:

Goranin Nikolaj1ORCID,Hora Simran Kaur1,Čenys Habil Antanas1ORCID

Affiliation:

1. Department of Information Systems, Vilnius Gediminas Technical University, 10223 Vilnius, Lithuania

Abstract

As the IoT market continues to rapidly expand, ensuring the security of IoT systems becomes increasingly critical. This paper aims to identify emerging trends and technologies in IoT intrusion detection. A bibliometric analysis of research trends in IoT intrusion detection, leveraging data from the Web of Science (WoS) repository, is conducted to understand the landscape of publications in this field. The analysis reveals a significant increase in publications on intrusion detection in IoT, indicating growing research interest. Research articles are the leading category of publications, and the analysis also highlights the collaborative linkages among authors, institutions, and nations. Co-occurrence analysis and citation analysis provide insights into the relationships among keywords and the impact of publications. The study also identifies keyword and publication citation burst detection, with recommendations for future research focusing on advanced machine learning techniques to enhance intrusion/anomaly detection. This comprehensive analysis offers valuable guidance for diverse and extensive applications in IoT intrusion detection.

Publisher

MDPI AG

Reference25 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3