Innovative Noise Extraction and Denoising in Low-Dose CT Using a Supervised Deep Learning Framework

Author:

Zhang Wei1,Salmi Abderrahmane2,Yang Chifu1,Jiang Feng2

Affiliation:

1. School of Electromechanical Engineering, Harbin Institute of Technology, Harbin 150001, China

2. School of Computer Science, Harbin Institute of Technology, Harbin 150001, China

Abstract

Low-dose computed tomography (LDCT) imaging is a critical tool in medical diagnostics due to its reduced radiation exposure. However, this reduction often results in increased noise levels, compromising image quality and diagnostic accuracy. Despite advancements in denoising techniques, a robust method that effectively balances noise reduction and detail preservation remains a significant need. Current denoising algorithms frequently fail to maintain the necessary balance between suppressing noise and preserving crucial diagnostic details. Addressing this gap, our study focuses on developing a deep learning-based denoising algorithm that enhances LDCT image quality without losing essential diagnostic information. Here we present a novel supervised learning-based LDCT denoising algorithm that employs innovative noise extraction and denoising techniques. Our method significantly enhances LDCT image quality by incorporating multiple attention mechanisms within a U-Net-like architecture. Our approach includes a noise extraction network designed to capture diverse noise patterns precisely. This network is integrated into a comprehensive denoising system consisting of a generator network, a discriminator network, and a feature extraction AutoEncoder network. The generator network removes noise and produces high-quality CT images, while the discriminator network differentiates real images from denoised ones, improving the realism of the outputs. The AutoEncoder network ensures the preservation of image details and diagnostic integrity. Our method improves the peak signal-to-noise ratio (PSNR) and structural similarity (SSIM) by 7.777 and 0.128 compared to LDCT, by 0.483 and 0.064 compared to residual encoder–decoder convolutional neural network (RED-CNN), by 4.101 and 0.017 compared to Wasserstein generative adversarial network–visual geometry group (WGAN-VGG), and by 3.895 and 0.011 compared to Wasserstein generative adversarial network–autoencoder (WGAN-AE). This demonstrates that our method has a significant advantage in enhancing the signal-to-noise ratio of images. Extensive experiments on multiple standard datasets demonstrate our method’s superior performance in noise suppression and image quality enhancement compared to existing techniques. Our findings significantly impact medical imaging, particularly improving LDCT scan diagnostic accuracy. The enhanced image clarity and detail preservation offered by our method open new avenues for clinical applications and research. This improvement in LDCT image quality promises substantial contributions to clinical diagnostics, disease detection, and treatment planning, ensuring high-quality diagnostic outcomes while minimizing patient radiation exposure.

Funder

National Natural Science Foundation of China

Natural Science Foundation of ChongQing

Publisher

MDPI AG

Reference37 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3