Fact-Aware Generative Text Summarization with Dependency Graphs

Author:

Chen Ruoyu12ORCID,Li Yan2ORCID,Jiang Yuru12ORCID,Sun Bochen2ORCID,Wang Jingqi2ORCID,Li Zhen3ORCID

Affiliation:

1. Institute of Intelligent Information Processing, Beijing Information Science and Technology University, Beijing 100192, China

2. Computer School, Beijing Information Science and Technology University, Beijing 100192, China

3. School of Computer Science & Technology, Beijing Institute of Technology, Beijing 100081, China

Abstract

Generative text summaries often suffer from factual inconsistencies, where the summary deviates from the original text. This significantly reduces their usefulness. To address this issue, we propose a novel method for improving the factual accuracy of Chinese summaries by leveraging dependency graphs. Our approach involves analyzing the input text to build a dependency graph. This graph, along with the original text, is then processed by separate models: a Relational Graph Attention Neural Network for the dependency graph and a Transformer model for the text itself. Finally, a Transformer decoder generates the summary. We evaluate the factual consistency of the generated summaries using various methods. Experiments demonstrate that our approach improves about 7.79 points compared to the baseline Transformer model on the Chinese LCSTS dataset using ROUGE-1 metric, and 4.48 points in the factual consistency assessment model StructBERT.

Funder

Beijing Natural Science Foundation

Beijing Information Science and Technology University

Publisher

MDPI AG

Reference31 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3