Metaheuristic Algorithm-Based Proportional–Integrative–Derivative Control of a Twin Rotor Multi Input Multi Output System

Author:

Cabuker Ali Can1ORCID,Almalı Mehmet Nuri1ORCID

Affiliation:

1. Department of Electrical-Electronics Engineering, Faculty of Engineering, Van Yuzuncu Yil University, Van 65000, Türkiye

Abstract

Metaheuristic algorithms are computational techniques based on the collective behavior of swarms and the study of organisms acting in communities. These algorithms involve different types of organisms. Finding controller values for nonlinear systems is a challenging task using classical approaches. Hence, using metaheuristics to find the controller values of a twin rotor multi-input multi-output system (TRMS), one of the nonlinear systems studied in the literature, seems to be more appropriate than using classical methods. In this study, different types of metaheuristic algorithms were used to find the PID controller values for a TRMS, including a genetic algorithm (GA), a dragonfly algorithm, a cuckoo algorithm, a particle swarm optimization (PSO) algorithm, and a coronavirus optimization algorithm (COVIDOA). The obtained graphs were analyzed based on certain criteria for the main rotor and tail rotor angles to reach the reference value in the TRMS. The experimental results show that when the rise and settlement times of the TRMS are compared in terms of performance, the GA took 1.5040 s (seconds) and the COVIDOA took 9.59 s to increase the pitch angle to the reference value, with the GA taking 0.7845 s and the COVIDOA taking 2.4950 s to increase the yaw angle to the reference value. For the settling time, the GA took 11.67 s and the COVIDOA took 28.01 s for the pitch angle, while the GA took 14.97 s and the COVIDOA took 26.69 s for the yaw angle. With these values, the GA and COVIDOA emerge as the foremost algorithms in this context.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3