A Lightweight Wildfire Detection Method for Transmission Line Perimeters

Author:

Huang Xiaolong1,Xie Weicheng1ORCID,Zhang Qiwen1,Lan Yeshen1,Heng Huiling1,Xiong Jiawei1

Affiliation:

1. School of Electrical Engineering and Electronic Information, Xihua University, Chengdu 610039, China

Abstract

Due to extreme weather conditions and complex geographical features, the environments around power lines in forest areas have a high risk of wildfires. Once a wildfire occurs, it causes severe damage to the forest ecosystem. Monitoring wildfires around power lines in forested regions through deep learning can reduce the harm of wildfires to natural environments. To address the challenges of wildfire detection around power lines in forested areas, such as interference from complex environments, difficulty detecting small target objects, and high model complexity, a lightweight wildfire detection model based on the improved YOLOv8 is proposed. Firstly, we enhanced the image-feature-extraction capability using a novel feature-extraction network, GS-HGNetV2, and replaced the conventional convolutions with a Ghost Convolution (GhostConv) to reduce the model parameters. Secondly, the use of the RepViTBlock to replace the original Bottleneck in C2f enhanced the model’s feature-fusion capability, thereby improving the recognition accuracy for small target objects. Lastly, we designed a Resource-friendly Convolutional Detection Head (RCD), which reduces the model complexity while maintaining accuracy by sharing the parameters. The model’s performance was validated using a dataset of 11,280 images created by merging a custom dataset with the D-Fire data for monitoring wildfires near power lines. In comparison to YOLOv8, our model saw an improvement of 3.1% in the recall rate and 1.1% in the average precision. Simultaneously, the number of parameters and computational complexity decreased by 54.86% and 39.16%, respectively. The model is more appropriate for deployment on edge devices with limited computational power.

Funder

Science and Technology Achievements Transfer and Transformation Demonstration project of Sichuan province in China

Chunhui Project of Ministry of Education of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3