Segmentation Point Simultaneous Localization and Mapping: A Stereo Vision Simultaneous Localization and Mapping Method for Unmanned Surface Vehicles in Nearshore Environments

Author:

Gao Xiujing12,Lin Xinzhi12ORCID,Lin Fanchao12ORCID,Huang Hongwu12

Affiliation:

1. School of Smart Marine Science and Engineering, Fujian University of Technology, Fuzhou 350118, China

2. Fujian Provincial Key Laboratory of Marine Smart Equipment, Fuzhou 350118, China

Abstract

Unmanned surface vehicles (USVs) in nearshore areas are prone to environmental occlusion and electromagnetic interference, which can lead to the failure of traditional satellite-positioning methods. This paper utilizes a visual simultaneous localization and mapping (vSLAM) method to achieve USV positioning in nearshore environments. To address the issues of uneven feature distribution, erroneous depth information, and frequent viewpoint jitter in the visual data of USVs operating in nearshore environments, we propose a stereo vision SLAM system tailored for nearshore conditions: SP-SLAM (Segmentation Point-SLAM). This method is based on ORB-SLAM2 and incorporates a distance segmentation module, which filters feature points from different regions and adaptively adjusts the impact of outliers on iterative optimization, reducing the influence of erroneous depth information on motion scale estimation in open environments. Additionally, our method uses the Sum of Absolute Differences (SAD) for matching image blocks and quadric interpolation to obtain more accurate depth information, constructing a complete map. The experimental results on the USVInland dataset show that SP-SLAM solves the scaling constraint failure problem in nearshore environments and significantly improves the robustness of the stereo SLAM system in such environments.

Funder

Education and Scientific Research Project of Fujian Provincial Department of Finance

key scientific and technological innovation projects of Fujian Province

Research start-up funding of The Fujian University of techology

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3