RobustE2E: Exploring the Robustness of End-to-End Autonomous Driving

Author:

Jiang Wei1,Wang Lu23ORCID,Zhang Tianyuan23ORCID,Chen Yuwei4ORCID,Dong Jian5,Bao Wei5,Zhang Zichao1,Fu Qiang3

Affiliation:

1. Information Science Academy, China Electronics Technology Group Corporation, Beijing 100846, China

2. State Key Lab of Software Development Environment, Beihang University, Beijing 100191, China

3. School of Computer Science and Engineering, Beihang University, Beijing 100191, China

4. Aviation Industry Development Research Center of China, Beijing 100029, China

5. China Electronics Standardization Institute, Beijing 100007, China

Abstract

Autonomous driving technology has advanced significantly with deep learning, but noise and attacks threaten its real-world deployment. While research has revealed vulnerabilities in individual intelligent tasks, a comprehensive evaluation of these impacts across complete end-to-end systems is still underexplored. To address this void, we thoroughly analyze the robustness of four end-to-end autonomous driving systems against various noise and build the RobustE2E Benchmark, including five traditional adversarial attacks and a newly proposed Module-Wise Attack specifically targeting end-to-end autonomous driving in white-box settings, as well as four major categories of natural corruptions (a total of 17 types, with five severity levels) in black-box settings. Additionally, we extend the robustness evaluation from the open-loop model level to the closed-loop case studies of autonomous driving system level. Our comprehensive evaluation and analysis provide valuable insights into the robustness of end-to-end autonomous driving, which may offer potential guidance for targeted improvements to models. For example, (1) even the most advanced end-to-end models suffer large planning failures under minor perturbations, with perception tasks showing the most substantial decline; (2) among adversarial attacks, our Module-Wise Attack poses the greatest threat to end-to-end autonomous driving models, while PGD-l2 is the weakest, and among four categories of natural corruptions, noise and weather are the most harmful, followed by blur and digital distortion being less severe; (3) the integrated, multitask approach results in significantly higher robustness and reliability compared with the simpler design, highlighting the critical role of collaborative multitask in autonomous driving; and (4) the autonomous driving systems amplify the model’s lack of robustness, etc. Our research contributes to developing more resilient autonomous driving models and their deployment in the real world.

Funder

National Key R&D Program of China

Outstanding Research Project of Shen Yuan Honors College, BUAA

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3