A Novel Rational Medicine Use System Based on Domain Knowledge Graph

Author:

Qin Chaoping1,Wang Zhanxiang2,Zhao Jingran2,Liu Luyi3,Xiao Feng2,Han Yi2ORCID

Affiliation:

1. Wuhan University of Technology Hospital, Wuhan University of Technology, Wuhan 430070, China

2. School of Information Engineering, Wuhan University of Technology, Wuhan 430070, China

3. National Science Library (Wuhan), Chinese Academy of Sciences, Wuhan 430071, China

Abstract

Medication errors, which could often be detected in advance, are a significant cause of patient deaths each year, highlighting the critical importance of medication safety. The rapid advancement of data analysis technologies has made intelligent medication assistance applications possible, and these applications rely heavily on medical knowledge graphs. However, current knowledge graph construction techniques are predominantly focused on general domains, leaving a gap in specialized fields, particularly in the medical domain for medication assistance. The specialized nature of medical knowledge and the distinct distribution of vocabulary between general and biomedical texts pose challenges. Applying general natural language processing techniques directly to the medical domain often results in lower accuracy due to the inadequate utilization of contextual semantics and entity information. To address these issues and enhance knowledge graph production, this paper proposes an optimized model for named entity recognition and relationship extraction in the Chinese medical domain. Key innovations include utilizing Medical Bidirectional Encoder Representations from Transformers (MCBERT) for character-level embeddings pre-trained on Chinese biomedical corpora, employing Bi-directional Gated Recurrent Unit (BiGRU) networks for extracting enriched contextual features, integrating a Conditional Random Field (CRF) layer for optimal label sequence output, using the Piecewise Convolutional Neural Network (PCNN) to capture comprehensive semantic information and fusing it with entity features for better classification accuracy, and implementing a microservices architecture for the medication assistance review system. These enhancements significantly improve the accuracy of entity relationship classification in Chinese medical texts. The model achieved good performance in recognizing most entity types, with an accuracy of 88.3%, a recall rate of 85.8%, and an F1 score of 87.0%. In the relationship extraction stage, the accuracy reached 85.7%, the recall rate 82.5%, and the F1 score 84.0%.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3