BSRT++: Improving BSRT with Feature Enhancement, Weighted Fusion, and Cyclic Sampling

Author:

Son Suji1,Park Hanhoon12ORCID

Affiliation:

1. Division of Electronics and Communications Engineering, Pukyong National University, 45 Yongso-ro, Nam-gu, Busan 48513, Republic of Korea

2. Department of Artificial Intelligence Convergence, Graduate School, Pukyong National University, 45 Yongso-ro, Nam-gu, Busan 48513, Republic of Korea

Abstract

Multi-frame super-resolution (MFSR) generates a super-resolution (SR) image from a burst consisting of multiple low-resolution images. Burst Super-Resolution Transformer (BSRT) is a state-of-the-art deep learning model for MFSR. However, in this study, we show that there is room for further improvement of BSRT in the feature extraction and fusion process. Then, we propose a feature enhancement module (FEM), a cyclic sampling module (CSM), and a feature reweighting module (FRM) and integrate them into BSRT. Finally, we demonstrate that the modules can help recover the high-frequency information well, enhance inter-frame communication, and suppress misaligned features, thus significantly improving the SR performance and producing more visually plausible and pleasant results compared to other MFSR methods, including BSRT. On the SyntheticBurst and RealBurst datasets, the improved BSRT with the modules, dubbed BSRT++, achieved higher PSNR values of 1.15 dB and 1.31 dB than BSRT, respectively.

Funder

the National Research Foundation of Korea (NRF) Grant by the Korean Government through the MSIT

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3