Low-Dose COVID-19 CT Image Denoising Using Batch Normalization and Convolution Neural Network

Author:

Diwakar Manoj,Singh PrabhishekORCID,Karetla Girija RaniORCID,Narooka Preeti,Yadav ArvindORCID,Maurya Rajesh Kumar,Gupta Reena,Arias-Gonzáles José LuisORCID,Singh Mukund Pratap,Shetty Dasharathraj K.ORCID,Paul RahulORCID,Naik NitheshORCID

Abstract

Computed tomography (CT) is used in medical applications to produce digital medical imaging of the human body and is acquired by the reconstruction process, where X-rays are the key component of CT imaging. The present coronavirus outbreak has spawned new medical device and technology research fields. COVID-19 most severely affects people with poor immunity; children and pregnant women are more susceptible. A CT scan will be required to assess the infection’s severity. As a result, to reduce the radiation levels significantly there is a need to minimize the CT scan noise. The quality of CT images may degrade in the form of noisy images due to low radiation levels. Hence, this study proposes a novel denoising methodology for COVID-19 CT images with a low dose, where a convolution neural network (CNN) and batch normalization were utilized for denoising. From different output metrics such as peak signal-to-noise ratio (PSNR) and image quality index (IQI), the accuracy of the resulting CT images was checked and evaluated, where IQI obtained the best results in terms of 99% accuracy. The findings were also compared with the outcomes of related recent research in the domain. After a detailed review of the findings, it was noted that the proposed algorithm in the present study performed better in comparision to the existing literature.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3