A Study on the Stability of Graph Edit Distance Heuristics

Author:

Jia LinlinORCID,Tognetti VincentORCID,Joubert LaurentORCID,Gaüzère BenoitORCID,Honeine PaulORCID

Abstract

Graph edit distance (GED) is a powerful tool to model the dissimilarity between graphs. However, evaluating the exact GED is NP-hard. To tackle this problem, estimation methods of GED were introduced, e.g., bipartite and IPFP, during which heuristics were employed. The stochastic nature of these methods induces the stability issue. In this paper, we propose the first formal study of stability of GED heuristics, starting with defining a measure of these (in)stabilities, namely the relative error. Then, the effects of two critical factors on stability are examined, namely, the number of solutions and the ratio between edit costs. The ratios are computed on five datasets of various properties. General suggestions are provided to properly choose these factors, which can reduce the relative error by more than an order of magnitude. Finally, we verify the relevance of stability to predict performance of GED heuristics, by taking advantage of an edit cost learning algorithm to optimize the performance and the k-nearest neighbor regression for prediction. Experiments show that the optimized costs correspond to much higher ratios and an order of magnitude lower relative errors than the expert cost.

Funder

Agence Nationale de la Recherche

China Scholarship Council

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference38 articles.

1. Bridging Graph and Kernel Spaces: A Pre-Image Perspective;Jia;Ph.D. Thesis,2021

2. Graph Kernels: State-of-the-Art and Future Challenges;Borgwardt;arXiv,2020

3. Graph embedding techniques, applications, and performance: A survey

4. A survey on graph kernels

5. Graph kernels in chemoinformatics;Gaüzère,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3