Abstract
Owing to the development and expansion of energy-aware sensing devices and autonomous and intelligent systems, the Internet of Things (IoT) has gained remarkable growth and found uses in several day-to-day applications. However, IoT devices are highly prone to botnet attacks. To mitigate this threat, a lightweight and anomaly-based detection mechanism that can create profiles for malicious and normal actions on IoT networks could be developed. Additionally, the massive volume of data generated by IoT gadgets could be analyzed by machine learning (ML) methods. Recently, several deep learning (DL)-related mechanisms have been modeled to detect attacks on the IoT. This article designs a botnet detection model using the barnacles mating optimizer with machine learning (BND-BMOML) for the IoT environment. The presented BND-BMOML model focuses on the identification and recognition of botnets in the IoT environment. To accomplish this, the BND-BMOML model initially follows a data standardization approach. In the presented BND-BMOML model, the BMO algorithm is employed to select a useful set of features. For botnet detection, the BND-BMOML model in this study employs an Elman neural network (ENN) model. Finally, the presented BND-BMOML model uses a chicken swarm optimization (CSO) algorithm for the parameter tuning process, demonstrating the novelty of the work. The BND-BMOML method was experimentally validated using a benchmark dataset and the outcomes indicated significant improvements in performance over existing methods.
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Reference23 articles.
1. IoT security: Botnet detection in IoT using machine learning;Pokhrel;arXiv,2021
2. Research on Internet Security Situation Awareness Prediction Technology based on Improved RBF Neural Network Algorithm;Chen;J. Comput. Cogn. Eng.,2022
3. Machine Learning-Based Botnet Detection in Software-Defined Network: A Systematic Review
4. A Simple Methodology that Efficiently Generates All Optimal Spanning Trees for the Cable-Trench Problem;Vasko;J. Comput. Cogn. Eng.,2022
5. Introduction to the special section on advances of machine learning in cybersecurity (VSI-mlsec)
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献