Deep Learning Reader for Visually Impaired

Author:

Ganesan JothiORCID,Azar Ahmad TaherORCID,Alsenan Shrooq,Kamal Nashwa Ahmad,Qureshi BasitORCID,Hassanien Aboul Ella

Abstract

Recent advances in machine and deep learning algorithms and enhanced computational capabilities have revolutionized healthcare and medicine. Nowadays, research on assistive technology has benefited from such advances in creating visual substitution for visual impairment. Several obstacles exist for people with visual impairment in reading printed text which is normally substituted with a pattern-based display known as Braille. Over the past decade, more wearable and embedded assistive devices and solutions were created for people with visual impairment to facilitate the reading of texts. However, assistive tools for comprehending the embedded meaning in images or objects are still limited. In this paper, we present a Deep Learning approach for people with visual impairment that addresses the aforementioned issue with a voice-based form to represent and illustrate images embedded in printed texts. The proposed system is divided into three phases: collecting input images, extracting features for training the deep learning model, and evaluating performance. The proposed approach leverages deep learning algorithms; namely, Convolutional Neural Network (CNN), Long Short Term Memory (LSTM), for extracting salient features, captioning images, and converting written text to speech. The Convolution Neural Network (CNN) is implemented for detecting features from the printed image and its associated caption. The Long Short-Term Memory (LSTM) network is used as a captioning tool to describe the detected text from images. The identified captions and detected text is converted into voice message to the user via Text-To-Speech API. The proposed CNN-LSTM model is investigated using various network architectures, namely, GoogleNet, AlexNet, ResNet, SqueezeNet, and VGG16. The empirical results conclude that the CNN-LSTM based training model with ResNet architecture achieved the highest prediction accuracy of an image caption of 83%.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. SignSense: AI Framework for Sign Language Recognition;International Journal of Advanced Research in Science, Communication and Technology;2024-04-14

2. An Improved Robust Fuzzy Local Information K-Means Clustering Algorithm for Diabetic Retinopathy Detection;IEEE Access;2024

3. Dynamic video summarisation using stacked encoder-decoder architecture with residual learning network;International Journal of Intelligent Engineering Informatics;2024

4. A real-time image captioning framework using computer vision to help the visually impaired;Multimedia Tools and Applications;2023-12-22

5. Framework for Face recognition and Scene Description using Deep Learning for Visually Challenged people;2023 International Conference on Emerging Research in Computational Science (ICERCS);2023-12-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3