A Novel Approach to Maritime Image Dehazing Based on a Large Kernel Encoder–Decoder Network with Multihead Pyramids

Author:

Yang WeiORCID,Gao Hongwei,Jiang Yueqiu,Zhang Xin

Abstract

With the continuous increase in human–robot integration, battlefield formation is experiencing a revolutionary change. Unmanned aerial vehicles, unmanned surface vessels, combat robots, and other new intelligent weapons and equipment will play an essential role on future battlefields by performing various tasks, including situational reconnaissance, monitoring, attack, and communication relay. Real-time monitoring of maritime scenes is the basis of battle-situation and threat estimation in naval battlegrounds. However, images of maritime scenes are usually accompanied by haze, clouds, and other disturbances, which blur the images and diminish the validity of their contents. This will have a severe adverse impact on many downstream tasks. A novel large kernel encoder–decoder network with multihead pyramids (LKEDN-MHP) is proposed to address some maritime image dehazing-related issues. The LKEDN-MHP adopts a multihead pyramid approach to form a hybrid representation space comprising reflection, shading, and semanteme. Unlike standard convolutional neural networks (CNNs), the LKEDN-MHP uses many kernels with a 7 × 7 or larger scale to extract features. To reduce the computational burden, depthwise (DW) convolution combined with re-parameterization is adopted to form a hybrid model stacked by a large number of different receptive fields, further enhancing the hybrid receptive fields. To restore the natural hazy maritime scenes as much as possible, we apply digital twin technology to build a simulation system in virtual space. The final experimental results based on the evaluation metrics of the peak signal-to-noise ratio, structural similarity index measure, Jaccard index, and Dice coefficient show that our LKEDN-MHP significantly enhances dehazing and real-time performance compared with those of state-of-the-art approaches based on vision transformers (ViTs) and generative adversarial networks (GANs).

Funder

Program for Liaoning Innovative Talents in University

Scientific Research Fund of Liaoning Provincial Education Department

Liaoning Revitalization Talents Program

Shenyang Science and Technology Bureau

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference52 articles.

1. Vision Transformers for Single Image Dehazing;Song;arXiv,2022

2. XI. On the partition of energy between matter and Æther

3. Visibility in bad weather from a single image;Tan;Proceedings of the 2008 IEEE Conference on Computer Vision and Pattern Recognition,2008

4. Fast visibility restoration from a single color or gray level image;Tarel;Proceedings of the 2008 IEEE Conference on Computer Vision and Pattern Recognition,2009

5. A Cascaded Feature Pyramid Network With Non-Backward Propagation for Facial Expression Recognition

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3