Abstract
In distributed generation systems, the inverter is the main power interface and its stability directly determines the reliable operation of the grid-connected system. As a typical topology for a three-phase four-wire inverter, the LCL-type three-phase four-wire split capacitor inverter (LCL-TFSCI) is taken as the research subject of this paper. Compared with the three-phase three-wire inverter, there is an additional zero-sequence path in the LCL-TFSCI. Therefore, it is not only necessary to consider the stability of the positive and negative sequence system, but there is also the need to consider the stability of the zero-sequence system when performing stability analysis for the LCL-TFSCI. In this paper, a small-signal impedance model considering the zero-sequence loop of LCL-TFSCI is firstly established. Subsequently, the instability risk is revealed when LCL-TFSCI is connected to the grid with parallel compensation capacitors. Through instability analysis, an impedance-reshaping method based on the complex filter and combined differential elements is proposed, which can reshape the impedance characteristic of LCL-TFSCI within the wide frequency range and expand the stability domain of the grid-connected system. Finally, the proposed method is verified by simulation and experiment.
Funder
National Natural Science Foundation of China
Key Research and Development Program of the Xuzhou Municipal
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献