Modulation Recognition of Digital Signal Using Graph Feature and Improved K-Means

Author:

Li Guodong,Qin Xvan,Liu He,Jiang Kaiyuan,Wang AiliORCID

Abstract

Automatic modulation recognition (AMR) has been wildly used in both military and civilian fields. Since the recognition of digital signal at low signal-to-noise (SNR) ratio is difficult and complex, in this paper, a clustering analysis algorithm is proposed for its recognition. Firstly, the digital signal constellation is extracted from the received waveform (digital signal + noise) by using the orthogonal decomposition and then, it is denoised by using an algorithm referred to as auto density-based spatial clustering technique in noise (ADBSCAN). The combination of density peak clustering (DPC) algorithm and improved K-means clustering is used to extract the constellation’s graph features, the eigenvalues are input into cascade support vector machine (SVM) multi-classifiers, and the signal modulation mode is obtained. BPSK, QPSK, 8PSK, 16QAM and 32QAM five kinds of digital signals are trained and classified by our proposed method. Compared with the classical machine learning algorithm, the proposed algorithm has higher recognition accuracy at low SNR (less than 4dB), which confirmed that the proposed modulation recognition method is effective in noncooperation communication systems.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference19 articles.

1. A modulation recognition algorithm for UAV emitter;Xiang;Mod. Def. Technol.,2021

2. Radar signal modulation type recognition based on denoising convolutional neural network;Yihan;J. Electron. Inf. Technol.,2021

3. Research on a modulation recognition method for the FBMC-OQAM signals in 5G mobile communication system

4. Modulation Recognition of Underwater Acoustic Communication Signals Based on Joint Feature Extraction

5. Modulation Recognition With Graph Convolutional Network

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3