Abstract
Automatic modulation recognition (AMR) has been wildly used in both military and civilian fields. Since the recognition of digital signal at low signal-to-noise (SNR) ratio is difficult and complex, in this paper, a clustering analysis algorithm is proposed for its recognition. Firstly, the digital signal constellation is extracted from the received waveform (digital signal + noise) by using the orthogonal decomposition and then, it is denoised by using an algorithm referred to as auto density-based spatial clustering technique in noise (ADBSCAN). The combination of density peak clustering (DPC) algorithm and improved K-means clustering is used to extract the constellation’s graph features, the eigenvalues are input into cascade support vector machine (SVM) multi-classifiers, and the signal modulation mode is obtained. BPSK, QPSK, 8PSK, 16QAM and 32QAM five kinds of digital signals are trained and classified by our proposed method. Compared with the classical machine learning algorithm, the proposed algorithm has higher recognition accuracy at low SNR (less than 4dB), which confirmed that the proposed modulation recognition method is effective in noncooperation communication systems.
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献