Reservoir Prediction Model via the Fusion of Optimized Long Short-Term Memory Network (LSTM) and Bidirectional Random Vector Functional Link (RVFL)

Author:

Li Guodong,Pan YongkeORCID,Lan Pu

Abstract

An accurate and stable reservoir prediction model is essential for oil location and production. We propose an predictive hybrid model ILSTM-BRVFL based on an improved long short-term memory network (IAOS-LSTM) and a bidirectional random vector functional link (Bidirectional-RVFL) for this problem. Firstly, the Atomic Orbit Search algorithm (AOS) is used to perform collective optimization of the parameters to improve the stability and accuracy of the LSTM model for high-dimensional feature extraction. At the same time, there is still room to improve the optimization capability of the AOS. Therefore, an improvement scheme to further enhance the optimization capability is proposed. Then, the LSTM-extracted high-dimensional features are fed into the random vector functional link (RVFL) to improve the prediction of high-dimensional features by the RVFL, which is modified as the bidirectional RVFL. The proposed ILSTM-BRVFL (IAOS) model achieves an average prediction accuracy of 95.28%, compared to the experimental results. The model’s accuracy, recall values, and F1 values also showed good performance, and the prediction ability achieved the expected results. The comparative analysis and the degree of improvement in the model results show that the high-dimensional extraction of the input data by LSTM is the most significant improvement in prediction accuracy. Secondly, it introduces a double-ended mechanism for IAOS to LSTM and RVFL for parameter search.

Funder

National Natural Science Foundation of China

Hebei Province Natural Science Foundation

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3