Unlicensed Taxi Detection Model Based on Graph Embedding

Author:

Long Zhe,Zhang ZupingORCID,Chen Jinjin,Khawaja Faiza Riaz,Li Shaolong

Abstract

It is widely considered that unlicensed taxis pose a risk to public safety and interfere with the effective management of traffic. Significant human and material resources are expended by traffic control departments to locate these vehicles with limited success. This study suggests a smart, trajectory big data-based approach entitled Trajectory Graph Embedding-based Unlicensed Taxi Detection (TGE-UTD) to identify suspected unlicensed taxis and address this issue. The model implementation comprises three stages: first, the Automatic Number Plate Recognition (ANPR) data are transformed into a trajectory graph; second, a biased random walk is deployed to embed the trajectory graph; and finally, the set of vehicles similar to the known licensed taxis is obtained as the set of suspected unlicensed taxis using the cosine similarity of the vehicle embedding vector. Through precision evaluation and dimension reduction experiments, the performance of the walk model TGE-UTD is compared to that of the no-walk models Word2Vec and Doc2Vec in detecting large vehicles and taxis. TGE-UTD is observed to exhibit the best performance among the three models. This study pioneers the application of machine learning for feature extraction in detecting unlicensed taxis. The model proposed in the study can be deployed to detect unlicensed taxis; moreover, its application can be extended to detect other types of vehicles, providing traffic management departments with supporting vehicle detection information.

Funder

Hunan Key Laboratory for Internet of Things in Electricity

National Natural Science Foundation of China

National Natural Science Foundation of Hunan Province

research project on key technologies of power knowledge graphs

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference28 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3