Stochastic-Metaheuristic Model for Multi-Criteria Allocation of Wind Energy Resources in Distribution Network Using Improved Equilibrium Optimization Algorithm

Author:

Alanazi AbdulazizORCID,Alanazi MohanaORCID,Nowdeh Saber Arabi,Abdelaziz Almoataz Y.ORCID,Abu-Siada AhmedORCID

Abstract

In this paper, a stochastic-meta-heuristic model (SMM) for multi-criteria allocation of wind turbines (WT) in a distribution network is performed for minimizing the power losses, enhancing voltage profile and stability, and enhancing network reliability defined as energy not-supplied cost (ENSC) incorporating uncertainty of resource production and network demand. The proposed methodology has been implemented using the SMM, considering the uncertainty modeling of WT generation with Weibull probability distribution function (PDF) and load demand based on the normal PDF and using a new meta-heuristic method named the improved equilibrium optimization algorithm (IEOA). The traditional equilibrium optimization algorithm (EOA) is modeled by the simple dynamic equilibrium of the mass with proper composition in a control volume in which the nonlinear inertia weight reduction strategy is applied to improve the global search capability of the algorithm and prevent premature convergence. First, the problem is implemented without considering the uncertainty as a deterministic meta-heuristic model (DMM), and then the SMM is implemented considering the uncertainties. The results of DMM reveal the better capability of the IEOA method in achieving the lowest losses and the better voltage profile and stability and the higher level of the reliability in comparison with conventional EOA, particle swarm optimization (PSO), manta ray foraging optimization (MRFO) and spotted hyena optimization (SHO). The results show that in the DMM solving using the IEOA, traditional EOA, PSO, MRFO, and SHO, the ENSC is reduced from $3223.5 for the base network to $632.05, $636.90, $638.14, $635.67, and $636.18, respectively, and the losses decreased from 202.68 kW to 79.54 kW, 80.32 kW, 80.60 kW, 80.05 kW and 80.22 kW, respectively, while the network minimum voltage increased from 0.91308 p.u to 0.9588 p.u, 0.9585 p.u, 0.9584 p.u, 0.9586 p.u, and 0.9586 p.u, respectively, and the VSI improved from 26.28 p.u to 30.05 p.u, 30.03 p.u, 30.03 p.u, 30.04 p.u and 30.04 p.u; respectively. The results of the SMM showed that incorporating uncertainties increases the losses, weakens the voltage profile and stability and also reduces the network reliability. Compared to the DMM, the SMM-based problem is robust to prediction errors caused by uncertainties. Therefore, SMM based on existing uncertainties can lead to correct decision-making in the conditions of inherent-probabilistic changes in resource generation and load demand by the network operator.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3