Attention Mechanism and Neural Ordinary Differential Equations for the Incomplete Trajectory Information Prediction of Unmanned Aerial Vehicles Using Airborne Radar

Author:

Peng Haojie1,Yang Wei1,Wang Zheng2,Chen Ruihai1ORCID

Affiliation:

1. School of Aeronautics, Northwestern Polytechnical University, Xi’an 710072, China

2. Chengdu Aircraft Design and Research Institute, Chengdu 610041, China

Abstract

Due to the potential for airborne radar to capture incomplete observational information regarding unmanned aerial vehicle (UAV) trajectories, this study introduces a novel approach called Node-former, which integrates neural ordinary differential equations (NODEs) and the Informer framework. The proposed method exhibits high accuracy in trajectory prediction, even in scenarios with prolonged data interruptions. Initially, data outside the acceptable error range are discarded to mitigate the impact of interruptions on prediction accuracy. Subsequently, to address the irregular sampling caused by data elimination, NODEs are utilized to transform computational interpolation into an initial value problem (IPV), thus preserving informative features. Furthermore, this study enhances the Informer’s encoder through the utilization of time-series prior knowledge and introduces an ODE solver as the decoder to mitigate fluctuations in the original decoder’s output. This approach not only accelerates feature extraction for long sequence data, but also ensures smooth and robust output values. Experimental results demonstrate the superior performance of Node-former in trajectory prediction with interrupted data compared to traditional algorithms.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3