Synergistic Effects of Total Ionizing Dose and Single-Event Upset in 130 nm 7T Silicon-on-Insulator Static Random Access Memory

Author:

Zhang Zheng12ORCID,Guo Gang12,Wang Linfei3,Xiao Shuyan12,Chen Qiming12,Gao Linchun3,Wang Chunlin3,Li Futang12,Zhang Fuqiang12,Zhao Shuyong12,Liu Jiancheng12

Affiliation:

1. Department of Nuclear Physics, China Institute of Atomic Energy, Beijing 102413, China

2. National Innovation Center of Radiation Application, China Institute of Atomic Energy, Beijing 102413, China

3. Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029, China

Abstract

The exposure of spaceborne devices to high-energy charged particles in space results in the occurrence of both a total ionizing dose (TID) and the single-event effect (SEE). These phenomena present significant challenges for the reliable operation of spacecraft and satellites. The rapid advancement of semiconductor fabrication processes and the continuous reduction in device feature size have led to an increase in the significance of the synergistic effects of TID and SEE in static random access memory (SRAM). In order to elucidate the involved physical mechanisms, the synergistic effects of TID and single-event upset (SEU) in a new kind of 130 nm 7T silicon-on-insulator (SOI) SRAM were investigated by means of cobalt-60 gamma-ray and heavy ion irradiation experiments. The findings demonstrate that 7T SOI SRAM is capable of maintaining normal reading and writing functionality when subjected to TID irradiation at a total dose of up to 750 krad(Si). In general, the TID was observed to reduce the SEU cross-section of the 7T SOI SRAM. However, the extent of this reduction was influenced by the heavy ion LET value and the specific writing data pattern employed. Based on the available evidence, it can be proposed that TID preirradiation represents a promising avenue for enhancing the resilience of 7T SOI SRAMs to SEU.

Funder

Youth Talent Training Fund Project of China Institute of Atomic Energy

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3