Navigation Based on Hybrid Decentralized and Centralized Training and Execution Strategy for Multiple Mobile Robots Reinforcement Learning

Author:

Dai Yanyan1,Kim Deokgyu1,Lee Kidong1

Affiliation:

1. Robotics Department, Yeungnam University, Gyeongsan 38541, Republic of Korea

Abstract

In addressing the complex challenges of path planning in multi-robot systems, this paper proposes a novel Hybrid Decentralized and Centralized Training and Execution (DCTE) Strategy, aimed at optimizing computational efficiency and system performance. The strategy solves the prevalent issues of collision and coordination through a tiered optimization process. The DCTE strategy commences with an initial decentralized path planning step based on Deep Q-Network (DQN), where each robot independently formulates its path. This is followed by a centralized collision detection the analysis of which serves to identify potential intersections or collision risks. Paths confirmed as non-intersecting are used for execution, while those in collision areas prompt a dynamic re-planning step using DQN. Robots treat each other as dynamic obstacles to circumnavigate, ensuring continuous operation without disruptions. The final step involves linking the newly optimized paths with the original safe paths to form a complete and secure execution route. This paper demonstrates how this structured strategy not only mitigates collision risks but also significantly improves the computational efficiency of multi-robot systems. The reinforcement learning time was significantly shorter, with the DCTE strategy requiring only 3 min and 36 s compared to 5 min and 33 s in the comparison results of the simulation section. The improvement underscores the advantages of the proposed method in enhancing the effectiveness and efficiency of multi-robot systems.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3