Abstract
In this paper, we proposed a system to integrate optical and electronic instrumentation devices to predict a mode-locking fiber laser response, using a remote data acquisition with processing through an artificial neural network (ANN). The system is made up of an optical spectrum analyzer (OSA), oscilloscope (OSC), polarimeter (PAX), and the data acquisition automation through transmission control protocol/internet protocol (TCP/IP). A graphic user interface (GUI) was developed for automated data acquisition with the purpose to study the operational characteristics and stability at the passively mode-locked fiber laser (figure-eight laser, F8L) output. Moreover, the evolution of the polarization state and the behavior of the pulses are analyzed when polarization is changed by proper control plate adjustments. The data is processed using deep learning techniques, which provide the characteristics of the pulse at the output. Therefore, the parameter classification-identification is in accordance with the input polarization tilt used for the laser optimization.
Funder
Universidad de Guanajuato
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献