Innovative Reconfigurable Metasurface 2-D Beam-Steerable Reflector for 5G Wireless Communication

Author:

Rotshild David,Rahamim Efraim,Abramovich AmirORCID

Abstract

A tunable reflector component based on metasurface (MS) with a low profile and reduced mass is offered for indoor and outdoor 5G communication methods to overcome obstacles such as buildings, walls, and turns, and to allow wireless quasi-line of sight path communication at 37 GHz. Integrating varactors with MS unit cells allows tunability and reconfigurability. This approach was presented in many studies, with frequencies of up to K–band. However, today, higher frequencies are used, especially in communication. This work presents the design of a reconfigurable MS reflector, at Ka-band frequencies, based on a new type of resonant unit cell, with uniformed reflection for wide-incident-angular-range, and a simple stimulating DC bias for each MS unit cell, which allows a two–dimensional (2-D) continuous reflection phase manipulation. The unit cell provides a dynamic reflection phase range of over 300° at a wide bandwidth. Simulations of one-dimensional (1-D) and (2-D) at 37 GHz are presented. A steering range of up to ±48° was obtained for azimuth or elevation. A simultaneous independent 2-D beam steering range of up to ±10° in azimuth and up to ± 5° in elevation, allowing obstacles to overcome covering at a practical angular spatial cone of 20° and 10°, is presented.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3