A Novel Feature-Based Approach for Indoor Monocular SLAM

Author:

Hoseini Seyyed,Kabiri PeymanORCID

Abstract

Camera tracking and the construction of a robust and accurate map in unknown environments are still challenging tasks in computer vision and robotic applications. Visual Simultaneous Localization and Mapping (SLAM) along with Augmented Reality (AR) are two important applications, and their performance is entirely dependent on the accuracy of the camera tracking routine. This paper presents a novel feature-based approach for the monocular SLAM problem using a hand-held camera in room-sized workspaces with a maximum scene depth of 4–5 m. In the core of the proposed method, there is a Particle Filter (PF) responsible for the estimation of extrinsic parameters of the camera. In addition, contrary to key-frame based methods, the proposed system tracks the camera frame by frame and constructs a robust and accurate map incrementally. Moreover, the proposed algorithm initially constructs a metric sparse map. To this end, a chessboard pattern with a known cell size has been placed in front of the camera for a few frames. This enables the algorithm to accurately compute the pose of the camera and therefore, the depth of the primary detected natural feature points are easily calculated. Afterwards, camera pose estimation for each new incoming frame is carried out in a framework that is merely working with a set of visible natural landmarks. Moreover, to recover the depth of the newly detected landmarks, a delayed approach based on linear triangulation is used. The proposed method is applied to a realworld VGA quality video (640 × 480 pixels) where the translation error of the camera pose is less than 2 cm on average and the orientation error is less than 3 degrees, which indicates the effectiveness and accuracy of the developed algorithm.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3