Performance Analysis on Low-Power Energy Harvesting Wireless Sensors Eco-Friendly Networks with a Novel Relay Selection Scheme

Author:

Nguyen Hoang-SyORCID,Sevcik LukasORCID,Van Hoang-Phuong

Abstract

Simultaneous wireless information and power transfer (SWIPT) has been utilized widely in wireless sensor networks (WSNs) to design systems that can be sustained by harvesting energy from the surrounding areas. In this study, we investigated the performance of the low-power energy harvesting (LPEH) WSN. We equipped each relay with a battery that consisted of an on/off (1/0) decision scheme according to the Markov property. In this context, an optimal loop interference relay selection was proposed and investigated. Moreover, the crucial role of the log-normal distribution method in characterizing the LPEH WSN’s constraints was proven and emphasized. System performance was evaluated in terms of the overall ergodic outage probability (OP) both analytically and numerically with Monte Carlo simulation. The system had the lowest overall ergodic OP, thus, performed the best with an energy harvesting time switch of 0.175. Following the increase in the signal-to-noise ratio (SNR), the system without a direct link performed the worst. Furthermore, as more relays were deployed, the better the system performed. Finally, results showed that more than 80% of the data rates can be obtained under the household condition, without the need for extra bandwidth and power supply.

Funder

Slovak Scientific Grant Agency

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3