Multiple Ocular Disease Diagnosis Using Fundus Images Based on Multi-Label Deep Learning Classification

Author:

Ouda OsamaORCID,AbdelMaksoud EmanORCID,Abd El-Aziz A. A.ORCID,Elmogy MohammedORCID

Abstract

Designing computer-aided diagnosis (CAD) systems that can automatically detect ocular diseases (ODs) has become an active research field in the health domain. Although the human eye might have more than one OD simultaneously, most existing systems are designed to detect specific eye diseases. Therefore, it is crucial to develop new CAD systems that can detect multiple ODs simultaneously. This paper presents a novel multi-label convolutional neural network (ML-CNN) system based on ML classification (MLC) to diagnose various ODs from color fundus images. The proposed ML-CNN-based system consists of three main phases: the preprocessing phase, which includes normalization and augmentation using several transformation processes, the modeling phase, and the prediction phase. The proposed ML-CNN consists of three convolution (CONV) layers and one max pooling (MP) layer. Then, two CONV layers are performed, followed by one MP and dropout (DO). After that, one flatten layer is performed, followed by one fully connected (FC) layer. We added another DO once again, and finally, one FC layer with 45 nodes is performed. The system outputs the probabilities of all 45 diseases in each image. We validated the model by using cross-validation (CV) and measured the performance by five different metrics: accuracy (ACC), recall, precision, Dice similarity coefficient (DSC), and area under the curve (AUC). The results are 94.3%, 80%, 91.5%, 99%, and 96.7%, respectively. The comparisons with the existing built-in models, such as MobileNetV2, DenseNet201, SeResNext50, InceptionV3, and InceptionresNetv2, demonstrate the superiority of the proposed ML-CNN model.

Funder

Al Jouf University

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3