Scene Classification, Data Cleaning, and Comment Summarization for Large-Scale Location Databases

Author:

Cheng Hsu-YungORCID,Yu Chih-ChangORCID

Abstract

This paper presents a framework that can automatically analyze the images and comments in user-uploaded location databases. The proposed framework integrates image processing and natural language processing techniques to perform scene classification, data cleaning, and comment summarization so that the cluttered information in user-uploaded databases can be presented in an organized way to users. For scene classification, RGB image features, segmentation features, and the features of discriminative objects are fused with an attention module to improve classification accuracy. For data cleaning, incorrect images are detected using a multilevel feature extractor and a multiresolution distance calculation scheme. Finally, a comment summarization scheme is proposed to overcome the problems of unstructured sentences and the improper usage of punctuation marks, which are commonly found in customer reviews. To validate the proposed framework, a system that can classify and organize scenes and comments for hotels is implemented and evaluated. Comparisons with existing related studies are also performed. The experimental results validate the effectiveness and superiority of the proposed framework.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference36 articles.

1. A Review on the Significance of Machine Learning for Data Analysis in Big Data

2. Survey on evaluating the performance of machine learning algorithms: Past contributions and future roadmap;Basha,2019

3. ImageNet: A large-scale hierarchical image database;Deng;Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2009

4. Places: A 10 Million Image Database for Scene Recognition

5. Learning two-pathway convolutional neural networks for categorizing scene images

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3