Efficacy of Smart EEG Monitoring Amidst the COVID-19 Pandemic

Author:

Faezipour MisaghORCID,Faezipour MiadORCID

Abstract

Ever since the COVID-19 pandemic has majorly altered diagnosis and prognosis practices, the need for telemedicine and mobile/electronic health has never been more appreciated. Drastic complications of the pandemic such as burdens on the social and employment status resulting from extended quarantine and physical distancing, has also negatively impacted mental health. Doctors and healthcare workers have seen more than just the lungs affected by COVID-19. Neurological complications including stroke, headache, and seizures have been reported for populations of patients. Most mental conditions can be detected using the Electroencephalogram (EEG) signal. Brain disorders, neurodegenerative diseases, seizure/epilepsy, sleep/fatigue, stress, and depression have certain characteristics in the EEG wave, which clearly differentiate them from normal conditions. Smartphone apps analyzing the EEG signal have been introduced in the market. However, the efficacy of such apps has not been thoroughly investigated. Factors and their inter-relationships impacting efficacy can be studied through a causal model. This short communications/perspective paper outlines the initial premises of a system dynamics approach to assess the efficacy of smart EEG monitoring apps amid the pandemic, that could be revolutionary for patient well-being and care policies.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Remote Wearable Neuroimaging Devices for Health Monitoring and Neurophenotyping: A Scoping Review;Biomimetics;2024-04-16

2. Resiliency and Risk Assessment of Smart Vision-Based Skin Screening Applications with Dynamics Modeling;Sustainability;2023-09-17

3. Modeling Obesity Prevention Programs to Reduce Overweight Rates at Schools: A Perspective;2023 Congress in Computer Science, Computer Engineering, & Applied Computing (CSCE);2023-07-24

4. Exploring Risk Factors in PDAC Using System Dynamics;2023 Congress in Computer Science, Computer Engineering, & Applied Computing (CSCE);2023-07-24

5. BIO‐inspired fuzzy inference system—For physiological signal analysis;IET Cyber-Systems and Robotics;2023-07-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3