Abstract
In this paper, we present a new statistical approach for evaluating the time-dependent effectiveness of wearable robots without real work. In total, 10 subjects participated in three phases of the experiment; not equipped with a wearable robot without any load, not equipped with the wearable robot with a 15 kg load, equipped with the wearable robot with a 15 kg load. A higher limb wearable robot called LEXO-W was utilized. We measured the time taken to complete a 10 m round trip 10 times as a lap time, and each participant was measured multiple times under all conditions. An increasing number of round trips causes an increment in lap times. In particular, the load-carrying group showed a rapid upward trend in lap time over the number of round trips. However, the robot-assisted group showed a slightly upward trend of lap time over the number of round trips. This study statistically shows that the LEXO-W helps reduce physical fatigue by using repeated measure ANOVA analysis. Furthermore, we employed the generalized additive model(GAM) model to predict and evaluate the effectiveness of the wearable robot.
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering