Analysis and Design of a Fully-Integrated High-Power Differential CMOS T/R Switch and Power Amplifier Using Multi-Section Impedance Transformation Technique

Author:

Kim Hyun-Woong,Ahn Minsik,Lee OckgooORCID,Kim Hyoungsoo,Kim Hyungwook,Lee Chang-Ho

Abstract

In this paper, a new topology for a high-power single-pole-double-throw (SPDT) antenna switch is presented, and its loss mechanisms are fully analyzed. The differential architecture is employed in the proposed switch implementation to prevent unwanted channel formations of OFF-state Rx switch transistors by relieving the voltage swing over the Rx switch devices. In addition to that, the load impedance seen by the Tx switch is stepped down to reduce the voltage swing even more, allowing the antenna switch to handle a high-power signal without distortions. To drop the switch operating impedance, two matching networks are required at the input and the output of the Tx switch, respectively, and they are carefully implemented considering the integration issue of the front-end circuitries. From the loss analysis of the whole signal path, an optimum switch operating impedance is decided in view of a trade-off between power handling capability and insertion loss of the antenna switch. The insertion loss of the proposed design is compared to the conventional design with electromagnetic (EM) simulated transformer and inductors. The proposed antenna switch is implemented in a standard 0.18 µm CMOS process, and all switch devices adopt the deep n-well structure. The measured performance of the proposed transmitter front-end chain shows a 1 dB compression point (P1dB) of 32.1 dBm with 38.3% power-added efficiency (PAE) at 1.9 GHz.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3