Fuzzy Optimized MFAC Based on ADRC in AUV Heading Control

Author:

Li Hongjia,He Bo,Yin Qingqing,Mu Xiaokai,Zhang Jiaming,Wan Junhe,Wang Dianrui,Shen YueORCID

Abstract

The control issue of Autonomous Underwater Vehicles (AUV) is very challenging since the precise mathematical model of AUV is hard to establish due to its strong coupling and time-varying features. Meanwhile, AUV movement is easily interfered with by ocean currents and waves, causing anti-interference performance of traditional Proportional-Integral-Derivative (PID) control to be unsatisfactory. Aiming to solve those problems, an algorithm of fuzzy optimized model-free adaptive control (MFAC) based on auto-disturbance rejection control (ADRC) was proposed and used in AUV heading control. The MFAC is used to overcome the difficulty with establishing a precise mathematical model, and the ADRC is introduced to handle the interference of currents and waves. In this paper, MFAC and ADRC are combined. First, the MFAC is performed based only on the I/O data of the controlled object, which is simple to implement with low calculation complexity and strong robustness. Then, a tracking differentiator (TD) is employed to track the input signal to overcome the antinomy of rapidity and hypertonicity in MFAC. After that, an extended-state observer (ESO) is added to control the variables of MFAC to estimate all the disturbances, which can greatly improve the anti-interference ability of the system. Due to the complexity and diversity of the marine environment, a fuzzy optimized MFAC based on ADRC is proposed to improve the adaptability of AUV to the marine environment. Simulations and experiments were carried out to verify the control effect of this algorithm in complex sea conditions.

Funder

National Natural Science Foundation of China

The Natural Key Research and Development Program of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3