Enforcing Optimal ACL Policies Using K-Partite Graph in Hybrid SDN

Author:

Amin RashidORCID,Shah NadirORCID,Mehmood Waqar

Abstract

Software Defined Networking (SDN) as an innovative network paradigm that separates the management and control planes from the data plane of forwarding devices by implementing both the management and control planes at a logically centralized entity, called controller. Therefore, it ensures simple network management and control. However, due to several reasons (e.g., deployment cost, fear of downtime) organizations are very reluctant to adopt SDN in practice. Therefore, a viable solution is to replace the legacy devices by SDN devices incrementally. This results in a new network architecture called hybrid SDN. In hybrid SDN, both SDN and legacy devices operate in such a way to achieve the maximum benefit of SDN. The legacy devices are running a traditional protocol and SDN devices are operating using Open-flow protocols. Network policies play an essential role to secure the entire network from several types of attacks like unauthorized access and port/protocol control. In a hybrid SDN, policy implementation is a tedious task that requires extreme care and attention due to the hybrid nature of network traffic. Network policies may be implemented at various positions in hybrid SDN, e.g., near the destination or source node, and at the egress or ingress ports of a router. Each of these schemes has some trade-offs. For example, if policies are implemented near the source nodes then each packet generated from the source must pass through the filter and, thus, requires more processing power, time, resources, etc. Similarly, if policies are installed near the destination nodes, then a lot of unwanted traffic generated causing network congestion. This is an NP-hard problem. To address these challenges, we propose a systematic design approach to implement network policies optimally by using decision tree and K-partite graph. By traversing all the policies, we built up the decision tree that identifies which source nodes can communicate with which destination. Then, we traverse the decision tree and constructs K-partite graph to find possible places (interfaces of the routers) where ACL policies are to be implemented based on the different criteria (i.e., the minimum number of ACL rules and the minimum number of transmissions for unwanted traffic). The edge weight represents the cost per criteria. Then, we traverse the K-partite graph to find the optimal place for ACL rules implementation according to the given criteria. The simulation results indicate that the proposed technique outperforms existing approaches in terms of computation time, traffic optimization and successful packet delivery, etc. The results also indicate that the proposed method improves network performance and efficiency by decreasing network congestion and providing ease of policy implementation.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3