Synthesis and Analysis of the Fixed-Point Hodgkin–Huxley Neuron Model

Author:

Andreev ValeryORCID,Ostrovskii ValeriiORCID,Karimov TimurORCID,Tutueva AleksandraORCID,Doynikova Elena,Butusov DenisORCID

Abstract

In many tasks related to realistic neurons and neural network simulation, the performance of desktop computers is nowhere near enough. To overcome this obstacle, researchers are developing FPGA-based simulators that naturally use fixed-point arithmetic. In these implementations, little attention is usually paid to the choice of numerical method for the discretization of the continuous neuron model. In our study, the implementation accuracy of a neuron described by simplified Hodgkin–Huxley equations in fixed-point arithmetic is under investigation. The principle of constructing a fixed-point neuron model with various numerical methods is described. Interspike diagrams and refractory period analysis are used for the experimental study of the synthesized discrete maps of the simplified Hodgkin–Huxley neuron model. We show that the explicit midpoint method is much better suited to simulate the neuron dynamics on an FPGA than the explicit Euler method which is in common use.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3