Blind Source Separation for the Aggregation of Machine Learning Algorithms: An Arrhythmia Classification Case

Author:

Gajowniczek KrzysztofORCID,Grzegorczyk Iga,Gostkowski Michał,Ząbkowski Tomasz

Abstract

In this work, we present an application of the blind source separation (BSS) algorithm to reduce false arrhythmia alarms and to improve the classification accuracy of artificial neural networks (ANNs). The research was focused on a new approach for model aggregation to deal with arrhythmia types that are difficult to predict. The data for analysis consisted of five-minute-long physiological signals (ECG, BP, and PLETH) registered for patients with cardiac arrhythmias. For each patient, the arrhythmia alarm occurred at the end of the signal. The data present a classification problem of whether the alarm is a true one—requiring attention or is false—should not have been generated. It was confirmed that BSS ANNs are able to detect four arrhythmias—asystole, ventricular tachycardia, ventricular fibrillation, and tachycardia—with higher classification accuracy than the benchmarking models, including the ANN, random forest, and recursive partitioning and regression trees. The overall challenge scores were between 63.2 and 90.7.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3