Low-Power RTL Code Generation for Advanced CNN Algorithms toward Object Detection in Autonomous Vehicles

Author:

Kim YoungbaeORCID,Kim HeekyungORCID,Yadav NandakishorORCID,Li ShuaiORCID,Choi Kyuwon Ken

Abstract

In the implementation process of a convolution neural network (CNN)-based object detection system, the primary issues are power dissipation and limited throughput. Even though we utilize ultra-low power dissipation devices, the dynamic power dissipation issue will be difficult to resolve. During the operation of the CNN algorithm, there are several factors such as the heating problem generated from the massive computational complexity, the bottleneck generated in data transformation and by the limited bandwidth, and the power dissipation generated from redundant data access. This article proposes the low-power techniques, applies them to the CNN accelerator on the FPGA and ASIC design flow, and evaluates them on the Xilinx ZCU-102 FPGA SoC hardware platform and 45 nm technology for ASIC, respectively. Our proposed low-power techniques are applied at the register-transfer-level (RT-level), targeting FPGA and ASIC. In this article, we achieve up to a 53.21% power reduction in the ASIC implementation and saved 32.72% of the dynamic power dissipation in the FPGA implementation. This shows that our RTL low-power schemes have a powerful possibility of dynamic power reduction when applied to the FPGA design flow and ASIC design flow for the implementation of the CNN-based object detection system.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3