Low-Toxicity Perovskite Applications in Carbon Electrode Perovskite Solar Cells—A Review

Author:

Bidikoudi Maria,Simal CarmenORCID,Stathatos EliasORCID

Abstract

Perovskite solar cells (PSCs) with earth-abundant carbon as an effective replacer for unstable hole-transporting materials and expensive electrodes is a recently proposed structure promising better air and moisture stability. In this review paper, we report on the latest advances and state of the art of Pb-free and low-Pb-content perovskites, used as absorbers in carbon-based perovskite solar cells. The focus is on the implementation of these, environmentally friendly and non-toxic, structures in PSCs with a carbon electrode as a replacement of the noble metal electrode typically used (C-PSCs). The motivation for this study has been the great potential that C-PSCs have shown for the leap towards the commercialization of PSCs. Some of their outstanding properties include low cost, high-stability, ambient processability and compatibility with most up-scaling methods (e.g., printing). By surpassing the key obstacle of toxicity, caused by the Pb content of the highest-performing perovskites, and by combining the advantages of C-PSCs with the Pb-free perovskites low toxicity, this technology will move one step further; this review summarizes the most promising routes that have been reported so far towards that direction.

Funder

European Union and Greek national funds through the Operational Program Competitiveness, Entrepreneurship and Inno-vation, under the call RESEARCH – CREATE – INNOVATE

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference128 articles.

1. Templating and structural engineering in organic–inorganic perovskites

2. Synthesis, Structure, and Properties of Organic-Inorganic Perovskites and Related Materials;Mitzi;Prog. Inorg. Chem.,1999

3. White perovskite based lighting devices

4. Recent progress on highly sensitive perovskite photodetectors

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3