Abstract
Perovskite solar cells (PSCs) with earth-abundant carbon as an effective replacer for unstable hole-transporting materials and expensive electrodes is a recently proposed structure promising better air and moisture stability. In this review paper, we report on the latest advances and state of the art of Pb-free and low-Pb-content perovskites, used as absorbers in carbon-based perovskite solar cells. The focus is on the implementation of these, environmentally friendly and non-toxic, structures in PSCs with a carbon electrode as a replacement of the noble metal electrode typically used (C-PSCs). The motivation for this study has been the great potential that C-PSCs have shown for the leap towards the commercialization of PSCs. Some of their outstanding properties include low cost, high-stability, ambient processability and compatibility with most up-scaling methods (e.g., printing). By surpassing the key obstacle of toxicity, caused by the Pb content of the highest-performing perovskites, and by combining the advantages of C-PSCs with the Pb-free perovskites low toxicity, this technology will move one step further; this review summarizes the most promising routes that have been reported so far towards that direction.
Funder
European Union and Greek national funds through the Operational Program Competitiveness, Entrepreneurship and Inno-vation, under the call RESEARCH – CREATE – INNOVATE
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献