Singing Voice Detection in Opera Recordings: A Case Study on Robustness and Generalization

Author:

Krause MichaelORCID,Müller MeinardORCID,Weiß ChristofORCID

Abstract

Automatically detecting the presence of singing in music audio recordings is a central task within music information retrieval. While modern machine-learning systems produce high-quality results on this task, the reported experiments are usually limited to popular music and the trained systems often overfit to confounding factors. In this paper, we aim to gain a deeper understanding of such machine-learning methods and investigate their robustness in a challenging opera scenario. To this end, we compare two state-of-the-art methods for singing voice detection based on supervised learning: A traditional approach relying on hand-crafted features with a random forest classifier, as well as a deep-learning approach relying on convolutional neural networks. To evaluate these algorithms, we make use of a cross-version dataset comprising 16 recorded performances (versions) of Richard Wagner’s four-opera cycle Der Ring des Nibelungen. This scenario allows us to systematically investigate generalization to unseen versions, musical works, or both. In particular, we study the trained systems’ robustness depending on the acoustic and musical variety, as well as the overall size of the training dataset. Our experiments show that both systems can robustly detect singing voice in opera recordings even when trained on relatively small datasets with little variety.

Funder

Deutsche Forschungsgemeinschaft

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Study of Chinese Peking Opera Arithmetic Coding in Tan Dun’s Opera Marco Polo and the Art of Mixed Sexuality;Applied Mathematics and Nonlinear Sciences;2024-01-01

2. Analysis of the use of pop singing in musical theater singing based on data analysis;Applied Mathematics and Nonlinear Sciences;2023-10-30

3. Hierarchical Classification for Instrument Activity Detection in Orchestral Music Recordings;IEEE/ACM Transactions on Audio, Speech, and Language Processing;2023

4. Singing Voice Detection in Electronic Music with a Long-Term Recurrent Convolutional Network;Applied Sciences;2022-07-23

5. Hierarchical Classification of Singing Activity, Gender, and Type in Complex Music Recordings;ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP);2022-05-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3