A Deep Learning Sentiment Analyser for Social Media Comments in Low-Resource Languages

Author:

Kastrati ZenunORCID,Ahmedi Lule,Kurti ArianitORCID,Kadriu FatbardhORCID,Murtezaj Doruntina,Gashi Fatbardh

Abstract

During the pandemic, when people needed to physically distance, social media platforms have been one of the outlets where people expressed their opinions, thoughts, sentiments, and emotions regarding the pandemic situation. The core object of this research study is the sentiment analysis of peoples’ opinions expressed on Facebook regarding the current pandemic situation in low-resource languages. To do this, we have created a large-scale dataset comprising of 10,742 manually classified comments in the Albanian language. Furthermore, in this paper we report our efforts on the design and development of a sentiment analyser that relies on deep learning. As a result, we report the experimental findings obtained from our proposed sentiment analyser using various classifier models with static and contextualized word embeddings, that is, fastText and BERT, trained and validated on our collected and curated dataset. Specifically, the findings reveal that combining the BiLSTM with an attention mechanism achieved the highest performance on our sentiment analysis task, with an F1 score of 72.09%.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Detection of Misinformation Related to Pandemic Diseases using Machine Learning Techniques in Social Media Platforms;EAI Endorsed Transactions on Pervasive Health and Technology;2024-06-28

2. Leveraging distant supervision and deep learning for twitter sentiment and emotion classification;Journal of Intelligent Information Systems;2024-03-22

3. Applying Deep Neural Networks and NLP Techniques for Sentiment Analysis in Social Media Data;2024 2nd International Conference on Artificial Intelligence and Machine Learning Applications Theme: Healthcare and Internet of Things (AIMLA);2024-03-15

4. A Hybrid Bio-inspired Fuzzy Feature Selection Approach for Opinion Mining of Learner Comments;SN Computer Science;2024-01-02

5. A Hybrid CNN-LSTM Approach for Sentiment Analysis;Lecture Notes in Networks and Systems;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3