PF-TL: Payload Feature-Based Transfer Learning for Dealing with the Lack of Training Data

Author:

Jung Ilok,Lim Jongin,Kim Huy KangORCID

Abstract

The number of studies on applying machine learning to cyber security has increased over the past few years. These studies, however, are facing difficulties with making themselves usable in the real world, mainly due to the lack of training data and reusability of a created model. While transfer learning seems like a solution to these problems, the number of studies in the field of intrusion detection is still insufficient. Therefore, this study proposes payload feature-based transfer learning as a solution to the lack of training data when applying machine learning to intrusion detection by using the knowledge from an already known domain. Firstly, it expands the extracting range of information from header to payload to accurately deliver the information by using an effective hybrid feature extraction method. Secondly, this study provides an improved optimization method for the extracted features to create a labeled dataset for a target domain. This proposal was validated on publicly available datasets, using three distinctive scenarios, and the results confirmed its usability in practice by increasing the accuracy of the training data created from the transfer learning by 30%, compared to that of the non-transfer learning method. In addition, we showed that this approach can help in identifying previously unknown attacks and reusing models from different domains.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference64 articles.

1. A Survey of Cyber Security Approaches for Attack Detection, Prediction, and Prevention

2. Application of Deep Learning Architectures for Cyber Security;Vinayakumar,2019

3. Artificial Intelligence and Machine Learning in Cyber Security;Prasad,2020

4. Survey of intrusion detection systems: techniques, datasets and challenges

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3